If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-9x^2=80
We move all terms to the left:
49x^2-9x^2-(80)=0
We add all the numbers together, and all the variables
40x^2-80=0
a = 40; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·40·(-80)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*40}=\frac{0-80\sqrt{2}}{80} =-\frac{80\sqrt{2}}{80} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*40}=\frac{0+80\sqrt{2}}{80} =\frac{80\sqrt{2}}{80} =\sqrt{2} $
| 5n÷8=43 | | -7k=13 | | -10+p=8+7p | | x/0.3=0.8 | | 25/20=45/x | | y+4=10y/6 | | 25/20=45/v | | -5m=12 | | 8^3-5x=3 | | (x-5)(8)=72 | | -1.1n-9.28=1.1n+8.98 | | -12=m+-12 | | 3.8p=65.6 | | 3m+10=-10+8m-10 | | 12=-5m | | 6x=2x=80 | | 5x-9+x=3(2x-3) | | -10b+8=-3b-10-10 | | -9+5s=3s+9 | | -258=173-x | | 3(y-6)+18=12y-60 | | 3/5a=24 | | 1+3g=9+6g-4g | | 4x-9=5x-15+7x | | 0.3x-24.5=-0.2x+8.25 | | 14.2=t-5.5 | | -6f-15=3f-(-3) | | -2.2p+2.83=4.51+2p | | -13=w+5 | | 5*3=c | | 15=5c-13 | | 16x-13=67 |